PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de cubierta local
Imagen de cubierta local
Imagen de Google Jackets

Markov chains and decision processes for engineers and managers / Theodore J. Sheskin

Por: Tipo de material: TextoTextoDetalles de publicación: Boca Raton, FL : CRC Press, c2011Descripción: xiii, 478 p. : il. ; 25 cmISBN:
  • 1420051113
  • 9781420051117
Tema(s): Clasificación LoC:
  • T 57 .95 S54
Contenidos:
Markov chain structure and models -- Historical note -- States and transitions -- Model of the weather -- Random walks -- Estimating transition probabilities -- Multiple-step transition probabilities -- State probabilities after multiple steps -- Classification of states -- Markov chain structure -- Markov chain models -- Regular Markov chains -- Steady-state probabilities -- First passage to a target state -- Reducible Markov chains -- Canonical form of the transition matrix -- The fundamental matrix -- Passage to a target state -- Eventual passage to a closed set within a reducible multichain -- Limiting transition probability matrix -- A Markov chain with rewards (MCR) -- Rewards -- Undiscounted rewards -- Discounted rewards -- A Markov decision process (MDP) -- An undiscounted MDP -- A discounted MDP -- Special topics : state reduction and Hidden Markov chains -- State reduction -- An introduction to hidden Markov chains
Resumen: "This book presents an introduction to finite Markov chains and Markov decision processes, with applications in engineering and management. It introduces discrete-time, finite-state Markov chains, and Markov decision processes. The text describes both algorithms and applications, enabling students to understand the logical basis for the algorithms and be able to apply them. The applications address problems in government, business, and nonprofit sectors. The author uses Markov models to approximate the random behavior of complex systems in diverse areas, such as management, production, science, education, health services, finance, and marketing"-- Biblioteca del congreso
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA T 57 .95 S54 (Navegar estantería(Abre debajo)) 1 No para préstamo Ing. Industrial 030490
Libros Libros Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac Colección General T 57 .95 S54 (Navegar estantería(Abre debajo)) 2 Disponible Ing. Industrial 030491
Total de reservas: 0

Incluye referencias bibliográficas e índice

Markov chain structure and models -- Historical note -- States and transitions -- Model of the weather -- Random walks -- Estimating transition probabilities -- Multiple-step transition probabilities -- State probabilities after multiple steps -- Classification of states -- Markov chain structure -- Markov chain models -- Regular Markov chains -- Steady-state probabilities -- First passage to a target state -- Reducible Markov chains -- Canonical form of the transition matrix -- The fundamental matrix -- Passage to a target state -- Eventual passage to a closed set within a reducible multichain -- Limiting transition probability matrix -- A Markov chain with rewards (MCR) -- Rewards -- Undiscounted rewards -- Discounted rewards -- A Markov decision process (MDP) -- An undiscounted MDP -- A discounted MDP -- Special topics : state reduction and Hidden Markov chains -- State reduction -- An introduction to hidden Markov chains

"This book presents an introduction to finite Markov chains and Markov decision processes, with applications in engineering and management. It introduces discrete-time, finite-state Markov chains, and Markov decision processes. The text describes both algorithms and applications, enabling students to understand the logical basis for the algorithms and be able to apply them. The applications address problems in government, business, and nonprofit sectors. The author uses Markov models to approximate the random behavior of complex systems in diverse areas, such as management, production, science, education, health services, finance, and marketing"-- Biblioteca del congreso

Fondos PIFI Compra 120912 0.00

NUEVOSINDUSTRIA

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local
  • Universidad del Caribe
  • Con tecnología Koha