PARA TODA NECESIDAD SIEMPRE HAY UN LIBRO

Imagen de Google Jackets

An introduction to the theory of numbers / G.H. Hardy and E.M. Wright.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Oxford Mathematics | Oxford MathematicsEditor: Oxford : New York : Distribuidor: Oxford University Press, Fecha de copyright: ©2008Edición: 6a edición / revisado por D.R. Heath-Brown y J.H. SilvermanDescripción: xxi, 621 páginas : ilustraciones. ; 24 x 16 cmTipo de contenido:
  • texto
Tipo de medio:
  • sin medio
Tipo de soporte:
  • volumen
ISBN:
  • 9780199219858
  • 9780199219865
Tema(s): Clasificación LoC:
  • QA 241 H26 2008
Contenidos:
1. The series of primes (1) - 2. The series of primes (2) - 3. Farey series and a theorem of Minkowski - 4. Irrational numbers - 5. Congruences and residues - 6. Fermats theorem and its consequences - 7. General properties of congruences - 8. Congruences to composite moduli - 9. The representation of numbers by decimals - 10. Continued fractions - 11. Approximation of irrationals by rationals --12. The fundamental theorem of arithmetic in k(1), k(i) and k(p) - 13. Some diophantine equations - 14. Quadratic fields 1 - 15. Quadratic fields 2 - 16. The arithmetical functions - 17. Generating functions of arithmetical functions - 18. The order of magnitude of arithmetical functions - 19. Partitions - 20. The representation of a number by two or four squares - 21. Representation by cubes and higher powers - 22. The series of primes - 23. Kroneckers theorem - 24. Geometry of numbers - 25. Elliptic curves
Resumen: " An Introduction to the Theory of Numbers by G.H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. Developed under the guidance of D.R. Heath-Brown this Sixth Edition of An Introduction to the Theory of Numbers has been extensively revised and updated to lead today's students through the key milestones and developments in number theory. " - P. [4]
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Biblioteca de origen Colección Signatura topográfica Copia número Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libros para consulta en sala Libros para consulta en sala Biblioteca Antonio Enriquez Savignac Biblioteca Antonio Enriquez Savignac COLECCIÓN RESERVA QA 241 H26 2008 (Navegar estantería(Abre debajo)) 1 No para préstamo Ing. Telematica 036957
Total de reservas: 0

Incluye :"A list of books": páginas [597]-600) e índice

1. The series of primes (1) - 2. The series of primes (2) - 3. Farey series and a theorem of Minkowski - 4. Irrational numbers - 5. Congruences and residues - 6. Fermats theorem and its consequences - 7. General properties of congruences - 8. Congruences to composite moduli - 9. The representation of numbers by decimals - 10. Continued fractions - 11. Approximation of irrationals by rationals --12. The fundamental theorem of arithmetic in k(1), k(i) and k(p) - 13. Some diophantine equations - 14. Quadratic fields 1 - 15. Quadratic fields 2 - 16. The arithmetical functions - 17. Generating functions of arithmetical functions - 18. The order of magnitude of arithmetical functions - 19. Partitions - 20. The representation of a number by two or four squares - 21. Representation by cubes and higher powers - 22. The series of primes - 23. Kroneckers theorem - 24. Geometry of numbers - 25. Elliptic curves

" An Introduction to the Theory of Numbers by G.H. Hardy and E. M. Wright is found on the reading list of virtually all elementary number theory courses and is widely regarded as the primary and classic text in elementary number theory. Developed under the guidance of D.R. Heath-Brown this Sixth Edition of An Introduction to the Theory of Numbers has been extensively revised and updated to lead today's students through the key milestones and developments in number theory. " - P. [4]

Ingeniería Industrial

NUEVOSINDUSTRIA

  • Universidad del Caribe
  • Con tecnología Koha