Python machine learning : machine learning and deep learning with python, scikit-learn, and tensorflow 2 / Sebastian Raschka y Vahid Mirjalili.
Tipo de material: TextoIdioma: Inglés Editor: Birmingham : Distribuidor: Packt Publishing, Limited, Fecha de copyright: ©2019Edición: 3a ediciónDescripción: xxii, 742 páginas : ilustraciones, gráficas ; 23 x 19 cmTipo de contenido:- texto
- sin medio
- volumen
- 9781789955750
- 005.133 RAS
- QA 76 .73 .P98 R373 2019
Tipo de ítem | Biblioteca actual | Biblioteca de origen | Colección | Signatura topográfica | Copia número | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|---|---|
Libros para consulta en sala | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | COLECCIÓN RESERVA | QA 76 .73 .P98 R373 2019 (Navegar estantería(Abre debajo)) | Ejem.1 | No para préstamo (Préstamo interno) | Ingeniería Logística | 043001 | |||
Libros | Biblioteca Antonio Enriquez Savignac | Biblioteca Antonio Enriquez Savignac | Colección General | QA 76 .73 .P98 R373 2019 (Navegar estantería(Abre debajo)) | Ejem.2 | Disponible | Ingeniería Logística | 043002 |
Incluye índice
"Third edition includes TensorFlow 2, GANS, and reinforcement learning"
Giving computers the ability to learn from data --
Training simple machine learning algorithms for classification --
A tour of machine learning classifiers using scikit-learn --
Building good training sets-data preprocessing --
Compressing data via dimensionality reduction --
Learning best practices for model evaluation and hyperparmeter tuning --
Combining different models for ensemble learning --
Applying machine learning to sentiment analysis --
Embedding a machine learning model into a web application --
Predicting continuous target variables with regression analysis --
Working with unlabeled data-clustering analysis --
Implementing a multilayer artificial neural network from Scratch --
Parallelizing neural network training with TensorFlow --
Going deeper --
The mechanics of TensorFlow --
Classifying images with deep convolutional neural networks --
Modeling sequential data using recurrent neural networks --
Generative adversarial networks for synthesizing new data --
Reinforcement learning for decision making in complex environments
Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. This new third edition is updated for TensorFlow 2 and the latest additions to ...